Copied to
clipboard

G = C23.554C24order 128 = 27

271st central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.50C23, C23.554C24, C22.2452- 1+4, C22.3292+ 1+4, (C2×C42).86C22, (C22×C4).164C23, C23.Q8.23C2, C23.4Q8.16C2, C23.11D4.31C2, C23.81C2370C2, C23.83C2370C2, C24.C22.45C2, C23.63C23121C2, C23.65C23109C2, C2.C42.271C22, C2.51(C22.33C24), C2.61(C22.36C24), C2.34(C22.35C24), C2.35(C22.34C24), C2.106(C23.36C23), (C4×C4⋊C4)⋊114C2, (C2×C4).179(C4○D4), (C2×C4⋊C4).895C22, C22.426(C2×C4○D4), (C2×C22⋊C4).235C22, SmallGroup(128,1386)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.554C24
C1C2C22C23C22×C4C2×C4⋊C4C23.63C23 — C23.554C24
C1C23 — C23.554C24
C1C23 — C23.554C24
C1C23 — C23.554C24

Generators and relations for C23.554C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=1, d2=c, e2=f2=a, g2=b, ab=ba, ac=ca, ede-1=ad=da, ae=ea, gfg-1=af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, dg=gd, eg=ge >

Subgroups: 356 in 189 conjugacy classes, 88 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C4×C4⋊C4, C23.63C23, C24.C22, C23.65C23, C23.Q8, C23.11D4, C23.81C23, C23.4Q8, C23.83C23, C23.554C24
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, 2- 1+4, C23.36C23, C22.33C24, C22.34C24, C22.35C24, C22.36C24, C23.554C24

Smallest permutation representation of C23.554C24
On 64 points
Generators in S64
(1 25)(2 26)(3 27)(4 28)(5 54)(6 55)(7 56)(8 53)(9 52)(10 49)(11 50)(12 51)(13 48)(14 45)(15 46)(16 47)(17 42)(18 43)(19 44)(20 41)(21 39)(22 40)(23 37)(24 38)(29 33)(30 34)(31 35)(32 36)(57 64)(58 61)(59 62)(60 63)
(1 61)(2 62)(3 63)(4 64)(5 35)(6 36)(7 33)(8 34)(9 39)(10 40)(11 37)(12 38)(13 19)(14 20)(15 17)(16 18)(21 52)(22 49)(23 50)(24 51)(25 58)(26 59)(27 60)(28 57)(29 56)(30 53)(31 54)(32 55)(41 45)(42 46)(43 47)(44 48)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 17 25 42)(2 43 26 18)(3 19 27 44)(4 41 28 20)(5 24 54 38)(6 39 55 21)(7 22 56 40)(8 37 53 23)(9 32 52 36)(10 33 49 29)(11 30 50 34)(12 35 51 31)(13 60 48 63)(14 64 45 57)(15 58 46 61)(16 62 47 59)
(1 51 25 12)(2 21 26 39)(3 49 27 10)(4 23 28 37)(5 13 54 48)(6 20 55 41)(7 15 56 46)(8 18 53 43)(9 62 52 59)(11 64 50 57)(14 32 45 36)(16 30 47 34)(17 29 42 33)(19 31 44 35)(22 60 40 63)(24 58 38 61)
(1 34 61 8)(2 35 62 5)(3 36 63 6)(4 33 64 7)(9 13 39 19)(10 14 40 20)(11 15 37 17)(12 16 38 18)(21 44 52 48)(22 41 49 45)(23 42 50 46)(24 43 51 47)(25 30 58 53)(26 31 59 54)(27 32 60 55)(28 29 57 56)

G:=sub<Sym(64)| (1,25)(2,26)(3,27)(4,28)(5,54)(6,55)(7,56)(8,53)(9,52)(10,49)(11,50)(12,51)(13,48)(14,45)(15,46)(16,47)(17,42)(18,43)(19,44)(20,41)(21,39)(22,40)(23,37)(24,38)(29,33)(30,34)(31,35)(32,36)(57,64)(58,61)(59,62)(60,63), (1,61)(2,62)(3,63)(4,64)(5,35)(6,36)(7,33)(8,34)(9,39)(10,40)(11,37)(12,38)(13,19)(14,20)(15,17)(16,18)(21,52)(22,49)(23,50)(24,51)(25,58)(26,59)(27,60)(28,57)(29,56)(30,53)(31,54)(32,55)(41,45)(42,46)(43,47)(44,48), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,17,25,42)(2,43,26,18)(3,19,27,44)(4,41,28,20)(5,24,54,38)(6,39,55,21)(7,22,56,40)(8,37,53,23)(9,32,52,36)(10,33,49,29)(11,30,50,34)(12,35,51,31)(13,60,48,63)(14,64,45,57)(15,58,46,61)(16,62,47,59), (1,51,25,12)(2,21,26,39)(3,49,27,10)(4,23,28,37)(5,13,54,48)(6,20,55,41)(7,15,56,46)(8,18,53,43)(9,62,52,59)(11,64,50,57)(14,32,45,36)(16,30,47,34)(17,29,42,33)(19,31,44,35)(22,60,40,63)(24,58,38,61), (1,34,61,8)(2,35,62,5)(3,36,63,6)(4,33,64,7)(9,13,39,19)(10,14,40,20)(11,15,37,17)(12,16,38,18)(21,44,52,48)(22,41,49,45)(23,42,50,46)(24,43,51,47)(25,30,58,53)(26,31,59,54)(27,32,60,55)(28,29,57,56)>;

G:=Group( (1,25)(2,26)(3,27)(4,28)(5,54)(6,55)(7,56)(8,53)(9,52)(10,49)(11,50)(12,51)(13,48)(14,45)(15,46)(16,47)(17,42)(18,43)(19,44)(20,41)(21,39)(22,40)(23,37)(24,38)(29,33)(30,34)(31,35)(32,36)(57,64)(58,61)(59,62)(60,63), (1,61)(2,62)(3,63)(4,64)(5,35)(6,36)(7,33)(8,34)(9,39)(10,40)(11,37)(12,38)(13,19)(14,20)(15,17)(16,18)(21,52)(22,49)(23,50)(24,51)(25,58)(26,59)(27,60)(28,57)(29,56)(30,53)(31,54)(32,55)(41,45)(42,46)(43,47)(44,48), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,17,25,42)(2,43,26,18)(3,19,27,44)(4,41,28,20)(5,24,54,38)(6,39,55,21)(7,22,56,40)(8,37,53,23)(9,32,52,36)(10,33,49,29)(11,30,50,34)(12,35,51,31)(13,60,48,63)(14,64,45,57)(15,58,46,61)(16,62,47,59), (1,51,25,12)(2,21,26,39)(3,49,27,10)(4,23,28,37)(5,13,54,48)(6,20,55,41)(7,15,56,46)(8,18,53,43)(9,62,52,59)(11,64,50,57)(14,32,45,36)(16,30,47,34)(17,29,42,33)(19,31,44,35)(22,60,40,63)(24,58,38,61), (1,34,61,8)(2,35,62,5)(3,36,63,6)(4,33,64,7)(9,13,39,19)(10,14,40,20)(11,15,37,17)(12,16,38,18)(21,44,52,48)(22,41,49,45)(23,42,50,46)(24,43,51,47)(25,30,58,53)(26,31,59,54)(27,32,60,55)(28,29,57,56) );

G=PermutationGroup([[(1,25),(2,26),(3,27),(4,28),(5,54),(6,55),(7,56),(8,53),(9,52),(10,49),(11,50),(12,51),(13,48),(14,45),(15,46),(16,47),(17,42),(18,43),(19,44),(20,41),(21,39),(22,40),(23,37),(24,38),(29,33),(30,34),(31,35),(32,36),(57,64),(58,61),(59,62),(60,63)], [(1,61),(2,62),(3,63),(4,64),(5,35),(6,36),(7,33),(8,34),(9,39),(10,40),(11,37),(12,38),(13,19),(14,20),(15,17),(16,18),(21,52),(22,49),(23,50),(24,51),(25,58),(26,59),(27,60),(28,57),(29,56),(30,53),(31,54),(32,55),(41,45),(42,46),(43,47),(44,48)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,17,25,42),(2,43,26,18),(3,19,27,44),(4,41,28,20),(5,24,54,38),(6,39,55,21),(7,22,56,40),(8,37,53,23),(9,32,52,36),(10,33,49,29),(11,30,50,34),(12,35,51,31),(13,60,48,63),(14,64,45,57),(15,58,46,61),(16,62,47,59)], [(1,51,25,12),(2,21,26,39),(3,49,27,10),(4,23,28,37),(5,13,54,48),(6,20,55,41),(7,15,56,46),(8,18,53,43),(9,62,52,59),(11,64,50,57),(14,32,45,36),(16,30,47,34),(17,29,42,33),(19,31,44,35),(22,60,40,63),(24,58,38,61)], [(1,34,61,8),(2,35,62,5),(3,36,63,6),(4,33,64,7),(9,13,39,19),(10,14,40,20),(11,15,37,17),(12,16,38,18),(21,44,52,48),(22,41,49,45),(23,42,50,46),(24,43,51,47),(25,30,58,53),(26,31,59,54),(27,32,60,55),(28,29,57,56)]])

32 conjugacy classes

class 1 2A···2G2H4A4B4C4D4E···4P4Q···4W
order12···2244444···44···4
size11···1822224···48···8

32 irreducible representations

dim1111111111244
type+++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C4○D42+ 1+42- 1+4
kernelC23.554C24C4×C4⋊C4C23.63C23C24.C22C23.65C23C23.Q8C23.11D4C23.81C23C23.4Q8C23.83C23C2×C4C22C22
# reps11231122121222

Matrix representation of C23.554C24 in GL8(𝔽5)

10000000
01000000
00100000
00010000
00004000
00000400
00000040
00000004
,
10000000
01000000
00400000
00040000
00004000
00000400
00000040
00000004
,
40000000
04000000
00400000
00040000
00004000
00000400
00000040
00000004
,
20000000
02000000
00320000
00020000
00002000
00000200
00000030
00000003
,
02000000
30000000
00140000
00040000
00000003
00000030
00000300
00003000
,
01000000
10000000
00400000
00310000
00000010
00000001
00004000
00000400
,
10000000
01000000
00300000
00030000
00000100
00004000
00000004
00000010

G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3],[0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,4,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0] >;

C23.554C24 in GAP, Magma, Sage, TeX

C_2^3._{554}C_2^4
% in TeX

G:=Group("C2^3.554C2^4");
// GroupNames label

G:=SmallGroup(128,1386);
// by ID

G=gap.SmallGroup(128,1386);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,120,758,723,100,185,136]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=1,d^2=c,e^2=f^2=a,g^2=b,a*b=b*a,a*c=c*a,e*d*e^-1=a*d=d*a,a*e=e*a,g*f*g^-1=a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*g=g*d,e*g=g*e>;
// generators/relations

׿
×
𝔽